Note on a Casimir energy calculation for a purely dielectric cylinder by mode summation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys. A: Math. Gen. 396703
(http://iopscience.iop.org/0305-4470/39/21/S71)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 03/06/2010 at 04:34

Please note that terms and conditions apply.

Note on a Casimir energy calculation for a purely dielectric cylinder by mode summation

August Romeo and Kimball A Milton ${ }^{1}$
Oklahoma Center for High Energy Physics and Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, USA

Received 5 October 2005, in final form 25 November 2005
Published 10 May 2006
Online at stacks.iop.org/JPhysA/39/6703

Abstract

We comment on a recent calculation of the zero-point energy for a dilute and infinitely long cylinder of purely-dielectric material. The vanishing result predicted by integration of van der Waals potentials is obtained.

PACS numbers: 42.50.Pq, 42.50.Lc, 11.10.Gh, 03.50.De

The Casimir effect is a change in the electromagnetic vacuum fluctuations brought about by the presence of boundaries. Particularly, cylindrical surfaces limiting dielectric media were considered in [1]. One of the first versions of that paper inspired an unpublished calculation, by Romeo, of the van der Waals energy for a purely dielectric cylinder in the dilute-dielectric approximation, which yielded a null result. That calculation found a tribune in appendix B of the final version of [1] and, eventually, unpublished work by Milonni and [2] by Barton provided independent confirmations.

This finding aroused curiosity about the corresponding Casimir energy, which would have to show the predicted equality between both quantities [3] and, therefore, was expected to vanish similarly. The divergences of this problem were studied through its heat kernel coefficents in [4], and the expected vanishing was first verified in [5], where the Casimir pressure was obtained from the expectation value of the stress-energy tensor using Green's functions. Next, a calculation of the Casimir energy based on the mode summation method [6] was completed. The present paper offers a comment on that work.

Let J_{m}, H_{m} denote the Bessel and Hankel functions (for $y>0, H_{m}(y) \equiv H_{m}^{(1)}(y)$). Given an infinitely long cylinder of radius a, oriented along the z-axis, with permittivity and permeability $\left(\varepsilon_{1}, \mu_{1}\right)$, surrounded by a medium with permittivity and permeability $\left(\varepsilon_{2}, \mu_{2}\right)$, the eigenfrequencies ω of the Maxwell equations with the adequate boundary conditions are the solutions of

$$
\begin{align*}
& f_{m}\left(k_{z}, \omega\right)=0, \quad m \in \mathbb{Z}, \quad k_{z} \in \mathbb{R}, \\
& f_{m}\left(k_{z}, \omega\right) \equiv \frac{1}{\Delta^{2}}\left[\Delta_{m}^{\mathrm{TE}}(x, y) \Delta_{m}^{\mathrm{TM}}(x, y)-m^{2} \frac{a^{4} \omega^{2} k_{z}^{2}}{x^{2} y^{2}}\left(\varepsilon_{1} \mu_{1}-\varepsilon_{2} \mu_{2}\right)^{2} J_{m}^{2}(x) H_{m}^{2}(y)\right] \tag{1}
\end{align*}
$$

${ }^{1}$ On sabbatical leave at the Department of Physics, Washington University, St. Louis, MO 63130 USA.
(see [7, 1]), where

$$
\begin{align*}
& \Delta=-\frac{2 \mathrm{i}}{\pi} \\
& \Delta_{m}^{\mathrm{TE}}(x, y)=\mu_{1} y J_{m}^{\prime}(x) H_{m}(y)-\mu_{2} x J_{m}(x) H_{m}^{\prime}(y), \tag{2}\\
& \Delta_{m}^{\mathrm{TM}}(x, y)=\varepsilon_{1} y J_{m}^{\prime}(x) H_{m}(y)-\varepsilon_{2} x J_{m}(x) H_{m}^{\prime}(y), \\
& x=\lambda_{1} a, \quad y=\lambda_{2} a, \quad \lambda_{i}^{2}=\varepsilon_{i} \mu_{i} \omega^{2}-k_{z}, \quad i=1,2
\end{align*}
$$

The m index is the azimuthal quantum number, k_{z} is the momentum along the cylinder axis, and p labels the zeros of $f_{m}\left(k_{z}, \omega\right)$. In fact $f_{m}=-\Delta^{-2} \Xi, \Xi$ being the same object as in [5] and Δ^{-2} a factor introduced for convenience. The velocities of light in each media are $c_{i}=\left(\varepsilon_{i} \mu_{i}\right)^{-1 / 2}, i=1,2$.

If medium 1 is purely dielectric and medium 2 is vacuum, $\varepsilon_{1}=\varepsilon, \mu_{1}=1, \varepsilon_{2}=\mu_{2}=1$ (obviously, $c_{2}=1$). Further,

$$
\begin{equation*}
\omega=a^{-1}\left(y^{2}+\widehat{k}^{2}\right)^{1 / 2}, \quad x^{2}=y^{2}+(\varepsilon-1)\left(y^{2}+\widehat{k}^{2}\right), \quad \widehat{k} \equiv k_{z} a \tag{3}
\end{equation*}
$$

The Casimir energy per unit length stems from the mode sum

$$
\begin{equation*}
\mathcal{E}_{C}=\frac{1}{2} \hbar \int_{-\infty}^{\infty} \frac{\mathrm{d} k_{z}}{2 \pi} \sum_{m} \sum_{p} \omega_{m, p, k_{z}} \tag{4}
\end{equation*}
$$

which is divergent, and will be regularized appropriately (see below). Reference [4] tells us that, up through the order of $(\varepsilon-1)^{2}$, there are no ambiguities, because the heat kernel coefficient which would multiply them is of $\mathcal{O}\left((\varepsilon-1)^{3}\right)$. Thus, we may just set
$\mathcal{E}_{C}(s)=\frac{\hbar}{2} \int_{-\infty}^{\infty} \frac{\mathrm{d} k_{z}}{2 \pi} \sum_{m} \sum_{p} \omega_{m, p, k_{z}}^{-s}=\frac{\hbar}{2} a^{s-1} \int_{-\infty}^{\infty} \frac{\widehat{\mathrm{d} k}}{2 \pi} \sum_{m} \sum_{p}\left(y_{m, p}^{2}+\widehat{k}^{2}\right)^{-s / 2}$,
without any additional mass scale. $\mathcal{E}_{C}(s)$ is a function of the complex variable s, and our idea is to redefine (4) by analytic continuation of this function to $s=-1$, i.e.,

$$
\begin{equation*}
\mathcal{E}_{C}=\lim _{s \rightarrow-1} \mathcal{E}_{C}(s) \tag{6}
\end{equation*}
$$

Once that \widehat{k}, m have specific values, the sum over p is expressed as a contour integral in complex y plane:

$$
\begin{equation*}
\mathcal{E}_{C}(s)=\frac{\hbar}{2} a^{s-1} \int_{-\infty}^{\infty} \frac{\widehat{\mathrm{d} k}}{2 \pi} \sum_{m=-\infty}^{\infty} \frac{s}{2 \pi \mathrm{i}} \int_{C} \mathrm{~d} y y\left(y^{2}+\widehat{k}^{2}\right)^{-s / 2-1} \ln f_{m}, \tag{7}
\end{equation*}
$$

where C is a circuit enclosing all the y values corresponding to the positive zeros of f_{m} (the argument principle [8] derived from the residue theorem). When applying this method, one sometimes finds an asymptotic form $f_{m, \text { as }}$ of f_{m} and then subtracts $\ln f_{m, \text { as }}$ from $\ln f_{m}$ in the integrand. In fact, the factors introduced in (1) relative to the original f_{m} of [1] have the same effect as having divided that function by the leading part of $f_{m, \text { as }}$.

At this point, the logarithm function of (7) is expanded in powers of $(\varepsilon-1)$, taking y as an independent variable and x as a function of $y, \widehat{k}, \varepsilon$ (see (3)). Then,

$$
\begin{align*}
\ln f_{m}=\left[L_{m 1}^{0}(y)\right. & \left.+L_{m 1}^{1}(y)\left(y^{2}+\widehat{k}^{2}\right)\right](\varepsilon-1)+\left[L_{m 2}^{00}(y)+L_{m 2}^{10}(y)\left(y^{2}+\widehat{k}^{2}\right)\right. \\
& \left.+L_{m 2}^{20}(y)\left(y^{2}+\widehat{k}^{2}\right)^{2}+L_{m 2}^{11}(y)\left(y^{2}+\widehat{k}^{2}\right) \widehat{k}^{2}\right](\varepsilon-1)^{2}+\mathcal{O}\left((\varepsilon-1)^{3}\right), \tag{8}
\end{align*}
$$

where
$L_{m 1}^{0}(y)=\frac{1}{\Delta} y J_{m}^{\prime}(y) H_{m}(y)$,
$L_{m 1}^{1}(y)=\frac{1}{\Delta y} \Delta_{m}^{(1,0)}(y)$,
$L_{m 2}^{00}(y)=-\frac{1}{2 \Delta^{2}} y^{2} J_{m}^{\prime 2}(y) H_{m}^{2}(y)$,
$L_{m 2}^{10}(y)=-\frac{1}{2 \Delta^{2}}\left[\Delta_{m}^{(1,0)}(y) J_{m}^{\prime}(y) H_{m}(y)+\frac{\Delta}{y}\left(J_{m}^{\prime}(y)+y\left(1-\frac{m^{2}}{y^{2}}\right) J_{m}(y)\right) H_{m}(y)\right]$,
$L_{m 2}^{20}(y)=L_{m 2}^{20 A}(y)+L_{m 2}^{20 B}(y), \quad\left\{\begin{array}{l}L_{m 2}^{20 A}(y)=\frac{1}{4 \Delta y^{2}}\left(\Delta_{m}^{(2,0)}(y)-\frac{1}{y} \Delta_{m}^{(1,0)}(y)\right), \\ L_{m 2}^{20 B}(y)=-\frac{1}{4 \Delta^{2} y^{2}}\left(\Delta_{m}^{(1,0)}(y)\right)^{2},\end{array}\right.$
$L_{m 2}^{11}(y)=-\frac{m^{2}}{\Delta^{2} y^{4}} J_{m}^{2}(y) H_{m}^{2}(y)$,
with
$\Delta_{m}^{(1,0)}(y)=-\frac{1}{y}\left[y^{2} J_{m}^{\prime}(y) H_{m}^{\prime}(y)+\left(y^{2}-m^{2}\right) J_{m}(y) H_{m}(y)\right]-\left(J_{m}(y) H_{m}(y)\right)^{\prime}$,
$\Delta_{m}^{(2,0)}(y)=\left(\Delta_{m}^{(1,0)}(y)\right)^{\prime}-\left(1-\frac{m^{2}+1}{y^{2}}\right) \Delta, \quad\left(\Delta_{m}^{(1,0)}(y)\right)^{\prime} \equiv \frac{\mathrm{d}}{\mathrm{d} y} \Delta_{m}^{(1,0)}(y)$.
Now, (8) is inserted into (7). The obtained expression involves integrals of the form

$$
\begin{equation*}
I \equiv \int_{-\infty}^{\infty} \widehat{\mathrm{d} k} \int_{C} \mathrm{~d} y y F(y)\left(y^{2}+\widehat{k}^{2}\right)^{-\alpha} \widehat{k}^{2 \beta}, \tag{11}
\end{equation*}
$$

where C is the contour of (7) and F satisfies $F(-\mathrm{i} v)=F(\mathrm{i} v)$ for $v \in \mathbb{R}$, as well as having good asymptotic properties (the role of F is played by the L_{m} 's of (9), (10)). Examining the ($y^{2}+\widehat{k}^{2}$) powers in (7), (8), one sees that, in the required cases, $\alpha=s / 2+1, s / 2, s / 2-1$, and $\beta=0$ except for one integral with $\beta=1$. Analytic continuation in s obviously amounts to analytic continuation in α. Following [6], the value of I is given by

$$
\begin{equation*}
I=-2 \mathrm{iB}\left(\beta+\frac{1}{2}, 1-\alpha\right) \sin (\pi \alpha) \int_{0}^{\infty} \mathrm{d} v v^{2-2 \alpha+2 \beta} F(\mathrm{i} v) \tag{12}
\end{equation*}
$$

where B denotes the Euler beta function (about the mathematical basis, see also [9, 10]). Note that for $s=-1$, i.e., $\alpha=1 / 2,-1 / 2,-3 / 2$, and for $\beta=0,1$, the beta and sine functions are finite. Application of formula (12) to equations (7), (8) gives

$$
\begin{equation*}
\mathcal{E}_{C}(s)=\mathcal{E}_{C 1}(s)(\varepsilon-1)+\mathcal{E}_{C 2}(s)(\varepsilon-1)^{2}+\mathcal{O}\left((\varepsilon-1)^{3}\right) \tag{13}
\end{equation*}
$$

where
$\mathcal{E}_{C 1}(s)=\mathcal{E}_{C 1}^{0}(s)+\mathcal{E}_{C 1}^{1}(s)$,
$\left\{\begin{array}{l}\mathcal{E}_{C 1}^{0}(s)=-\frac{\hbar}{2} \frac{s a^{s-1}}{2 \pi^{2}} \mathrm{~B}\left(\frac{1}{2},-\frac{s}{2}\right) \sin \left(-\pi \frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} \mathrm{d} v v^{-s} L_{m 1}^{0}(\mathrm{i} v), \\ \mathcal{E}_{C 1}^{1}(s)=-\frac{\hbar}{2} \frac{s a^{s-1}}{2 \pi^{2}} \mathrm{~B}\left(\frac{1}{2}, 1-\frac{s}{2}\right) \sin \left(\pi \frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} \mathrm{d} v v^{2-s} L_{m 1}^{1}(\mathrm{i} v),\end{array}\right.$
and

$$
\mathcal{E}_{C 2}(s)=\mathcal{E}_{C 2}^{00}(s)+\mathcal{E}_{C 2}^{10}(s)+\mathcal{E}_{C 2}^{20 A}(s)+\mathcal{E}_{C 2}^{20 B}(s)+\mathcal{E}_{C 2}^{11}(s)
$$

$$
\left\{\begin{array}{l}
\mathcal{E}_{C 2}^{00}(s)=-\frac{\hbar}{2} \frac{s a^{s-1}}{2 \pi^{2}} \mathrm{~B}\left(\frac{1}{2},-\frac{s}{2}\right) \sin \left(-\pi \frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} \mathrm{d} v v^{-s} L_{m 2}^{00}(\mathrm{i} v), \tag{15}\\
\mathcal{E}_{C 2}^{10}(s)=-\frac{\hbar}{2} \frac{s a^{s-1}}{2 \pi^{2}} \mathrm{~B}\left(\frac{1}{2}, 1-\frac{s}{2}\right) \sin \left(\pi \frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} \mathrm{d} v v^{2-s} L_{m 2}^{10}(\mathrm{i} v), \\
\mathcal{E}_{C 2}^{20 A, B}(s)=-\frac{\hbar}{2} \frac{s a^{s-1}}{2 \pi^{2}} \mathrm{~B}\left(\frac{1}{2}, 2-\frac{s}{2}\right) \sin \left(-\pi \frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} \mathrm{d} v v^{4-s} L_{m 2}^{20 A, B}(\mathrm{i} v), \\
\mathcal{E}_{C 2}^{11}(s)=-\frac{\hbar}{2} \frac{s a^{s-1}}{2 \pi^{2}} \mathrm{~B}\left(\frac{3}{2}, 1-\frac{s}{2}\right) \sin \left(\pi \frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} \mathrm{d} v v^{4-s} L_{m 2}^{11}(\mathrm{i} v) .
\end{array}\right.
$$

With $\mathcal{E}_{C 1}^{0}(s)$ taken from (14), and $L_{m 1}^{0}(\mathrm{i} v)$ from (9), we arrive at
$\mathcal{E}_{C 1}^{0}(s)=-\frac{\hbar}{2} \frac{s a^{s-1}}{2 \pi^{2}} \mathrm{~B}\left(\frac{1}{2},-\frac{s}{2}\right) \sin \left(-\pi \frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} \mathrm{d} v v^{1-s} I_{m}^{\prime}(v) K_{m}(v)$.
The beta and sine functions are already finite at $s=-1$, and the integral will be reexpressed by introducing the factor $1=-v W\left[I_{m}(v), K_{m}(v)\right]=-v\left[I_{m}(v) K_{m}^{\prime}(v)-I_{m}^{\prime}(v) K_{m}(v)\right]$ for every m :

$$
\begin{align*}
\int_{0}^{\infty} \mathrm{d} v v^{1-s} \sum_{m=-\infty}^{\infty} I_{m}^{\prime}(v) K_{m}(v)= & -\int_{0}^{\infty} \mathrm{d} v v^{2-s} \sum_{m=-\infty}^{\infty} I_{m}(v) I_{m}^{\prime}(v) K_{m}(v) K_{m}^{\prime}(v) \\
& +\int_{0}^{\infty} \mathrm{d} v v^{2-s} \sum_{m=-\infty}^{\infty} I_{m}^{\prime 2}(v) K_{m}^{2}(v) \tag{17}
\end{align*}
$$

The summations over m will be performed by taking advantage of the addition theorem for the modified Bessel functions:

$$
\begin{align*}
& \sum_{m=-\infty}^{\infty} I_{m}(k r) K_{m}(k \rho) \mathrm{e}^{\mathrm{i} m \phi}=K_{0}(k R(r, \rho, \phi)) \tag{18}\\
& R(r, \rho, \phi)=\sqrt{r^{2}+\rho^{2}-2 r \rho \cos \phi}, \quad \rho>r
\end{align*}
$$

Suitable manipulations of this identity $([5,6,11,12])$ yield
$\int_{0}^{\infty} \mathrm{d} v v^{2-s} \sum_{m=-\infty}^{\infty} I_{m}^{\prime 2}(v) K_{m}^{2}(v)=$
$\int_{0}^{\infty} \mathrm{d} v v^{2-s} \sum_{m=-\infty}^{\infty}{K_{m}^{\prime}}^{2}(v) I_{m}^{2}(v)=$
$\int_{0}^{\infty} \mathrm{d} v v^{2-s} \sum_{m=-\infty}^{\infty} I_{m}(v) I_{m}^{\prime}(v) K_{m}(v) K_{m}^{\prime}(v)=\frac{1}{8 \pi^{1 / 2}} \frac{\Gamma\left(\frac{5-s}{2}\right) \Gamma^{2}\left(\frac{3-s}{2}\right) \Gamma\left(\frac{1-s}{2}\right)}{\Gamma(3-s)} \frac{\Gamma\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s+1}{2}\right)}$
$\int_{0}^{\infty} \mathrm{d} v v^{2-s} \sum_{m=-\infty}^{\infty} m^{2} I_{m}(v) I_{m}^{\prime}(v) K_{m}(v) K_{m}^{\prime}(v)=\frac{1}{16 \pi^{1 / 2}} \frac{\Gamma^{4}\left(\frac{5-s}{2}\right)}{\Gamma(5-s)} \frac{\Gamma\left(\frac{s-2}{2}\right)}{\Gamma\left(\frac{s+1}{2}\right)}$

$$
\begin{gather*}
\int_{0}^{\infty} \mathrm{d} v v^{4-s} \sum_{m=-\infty}^{\infty} I_{m}^{\prime 2}(v) K_{m}^{\prime 2}(v)=\frac{1}{8 \pi^{1 / 2}}\left[\frac{\Gamma^{4}\left(\frac{5-s}{2}\right)}{\Gamma(5-s)} \frac{\Gamma\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s+1}{2}\right)}+\frac{\Gamma^{2}\left(\frac{5-s}{2}\right) \Gamma^{2}\left(\frac{3-s}{2}\right)}{\Gamma(4-s)} \frac{\Gamma\left(\frac{s-2}{2}\right)}{\Gamma\left(\frac{s-1}{2}\right)}\right. \\
\left.+\quad+\frac{1}{4} \frac{\Gamma\left(\frac{5-s}{2}\right) \Gamma^{2}\left(\frac{3-s}{2}\right) \Gamma\left(\frac{1-s}{2}\right)}{\Gamma(3-s)} \frac{\Gamma\left(\frac{s-4}{2}\right)}{\Gamma\left(\frac{s-3}{2}\right)}\right] \\
\int_{0}^{\infty} \mathrm{d} v v^{4-s} \sum_{m=-\infty}^{\infty} I_{m}^{2}(v) K_{m}^{2}(v)=\frac{1}{8 \pi^{1 / 2}} \frac{\Gamma^{4}\left(\frac{5-s}{2}\right)}{\Gamma(5-s)} \frac{\Gamma\left(\frac{s-4}{2}\right)}{\Gamma\left(\frac{s-3}{2}\right)} \\
\int_{0}^{\infty} \mathrm{d} v v^{2-s} \sum_{m=-\infty}^{\infty} m^{2} I_{m}^{2}(v) K_{m}^{2}(v)=\frac{1}{16 \pi^{1 / 2}} \frac{\Gamma\left(\frac{7-s}{2}\right) \Gamma^{2}\left(\frac{5-s}{2}\right) \Gamma\left(\frac{3-s}{2}\right)}{\Gamma(5-s)} \frac{\Gamma\left(\frac{s-4}{2}\right)}{\Gamma\left(\frac{s-1}{2}\right)} \\
\int_{0}^{\infty} \mathrm{d} v v^{-s} \sum_{m=-\infty}^{\infty} m^{4} I_{m}^{2}(v) K_{m}^{2}(v)=\frac{1}{8 \pi^{1 / 2}}\left[\frac{3}{4} \frac{\Gamma^{4}\left(\frac{5-s}{2}\right)}{\Gamma(5-s)} \frac{\Gamma\left(\frac{s-4}{2}\right)}{\Gamma\left(\frac{s+1}{2}\right)}\right. \\
\left.+\frac{1}{2} \frac{\Gamma^{2}\left(\frac{5-s}{2}\right) \Gamma^{2}\left(\frac{3-s}{2}\right)}{\Gamma(4-s)} \frac{\Gamma\left(\frac{s-4}{2}\right)}{\Gamma\left(\frac{s-1}{2}\right)}+\frac{1}{4} \frac{\Gamma\left(\frac{5-s}{2}\right) \Gamma^{2}\left(\frac{3-s}{2}\right) \Gamma\left(\frac{1-s}{2}\right)}{\Gamma(3-s)} \frac{\Gamma\left(\frac{s-4}{2}\right)}{\Gamma\left(\frac{s-3}{2}\right)}\right] \\
\int_{0}^{\infty} \mathrm{d} v v^{3-s} \sum_{m=-\infty}^{\infty} I_{m}^{\prime 2}(v) K_{m}(v) K_{m}^{\prime}(v)= \\
\int_{0}^{\infty} \mathrm{d} v v^{3-s} \sum_{m=-\infty}^{\infty} K_{m}^{\prime 2}(v) I_{m}(v) I_{m}^{\prime}(v)=-\frac{1}{8 \pi^{1 / 2}}\left[\frac{\Gamma^{2}\left(\frac{5-s}{2}\right) \Gamma^{2}\left(\frac{3-s}{2}\right)}{\Gamma(4-s)} \frac{\Gamma\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s+1}{2}\right)}\right. \\
\left.\quad+\frac{1}{2} \frac{\Gamma\left(\frac{5-s}{2}\right) \Gamma^{2}\left(\frac{3-s}{2}\right) \Gamma\left(\frac{1-s}{2}\right)}{\Gamma(3-s)} \frac{\Gamma\left(\frac{s-2}{2}\right)}{\Gamma\left(\frac{s-1}{2}\right)}\right] \\
\int_{0}^{\infty} \mathrm{d} v v^{3-s} \sum_{m=-\infty}^{\infty} I_{m}^{2}(v) K_{m}(v) K_{m}^{\prime}(v)= \\
\int_{0}^{\infty} \mathrm{d} v v^{3-s} \sum_{m=-\infty}^{\infty} K_{m}^{2}(v) I_{m}(v) I_{m}^{\prime}(v)=-\frac{1}{8 \pi^{1 / 2}} \frac{\Gamma^{2}\left(\frac{5-s}{2}\right) \Gamma^{2}\left(\frac{3-s}{2}\right)}{\Gamma(4-s)} \frac{\Gamma\left(\frac{s-2}{2}\right)}{\Gamma\left(\frac{s-1}{2}\right)} \\
\int_{0}^{\infty} \mathrm{d} v v^{1-s} \sum_{m=-\infty}^{\infty} m_{m=-\infty}^{\infty} m_{m}^{2} I_{m}^{2}(v) I_{m}(v) I_{m}^{\prime}(v)=-\frac{1}{16 \pi^{1 / 2}} \frac{\Gamma^{2}\left(\frac{5-s}{2}\right) \Gamma^{2}\left(\frac{3-s}{2}\right)}{\Gamma(4-s)} \frac{\Gamma\left(\frac{s-2}{2}\right)}{\Gamma\left(\frac{s+1}{2}\right)} .
\end{gather*}
$$

Although the left-hand side of each integral is not initially defined for $s=-1$, the right-hand side together with the remaining s dependent factors in $\mathcal{E}_{C}(s)$ will eventually provide the desired extension to negative s through the existing analytic continuations of the involved functions. Then, the poles at $s=-1,-3,-5, \ldots$ in the last dividing gamma functions will give rise to zeros at these points.

Going back to $\mathcal{E}_{C 1}^{0}(s)$, since (19) show that the two integrals in the second line of (17) have the same value,

$$
\begin{equation*}
\mathcal{E}_{C 1}^{0}(s)=0 \tag{20}
\end{equation*}
$$

even before setting $s=-1$.

Formulae (14) tell us that $\mathcal{E}_{C 1}^{1}(s)$ involves the integration of the $L_{m 1}^{1}(\mathrm{i} v)$ function, defined by (9), (10). Therefore,

$$
\begin{align*}
\mathcal{E}_{C 1}^{1}(s)=-\frac{\hbar}{2} & \frac{s a^{s-1}}{2 \pi^{2}} \mathrm{~B}\left(\frac{1}{2}, 1-\frac{s}{2}\right) \sin \left(\pi \frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} \mathrm{d} v v^{2-s} \\
& \times\left[I_{m}^{\prime}(v) K_{m}^{\prime}(v)-\left(1+\frac{m^{2}}{v^{2}}\right) I_{m}(v) K_{m}(v)+\frac{1}{v}\left(I_{m}(v) K_{m}(v)\right)^{\prime}\right] . \tag{21}
\end{align*}
$$

We multiply, again, each term in the m summation of (21) by $1=-v W\left[I_{m}(v), K_{m}(v)\right]$, and turn the initial expression into a linear combination of integrals with summations of products of four Bessel functions. That linear combination yields an identically null result-one that is zero for any s value-by virtue of the symmetries observed in (19) under interchange of different Bessel function types (see also comment after equation (80) in [5]). As a result,

$$
\begin{equation*}
\mathcal{E}_{C 1}^{1}(s)=0 . \tag{22}
\end{equation*}
$$

Equation (21) admits the following reinterpretation. Taking into account the fact that I_{m}, K_{m} satisfy the modified Bessel equation, we apply partial integration to (21) omitting a 'boundary term' which vanishes for a given s range that does not include $s=-1$ yet. Doing so, we find

$$
\begin{align*}
\mathcal{E}_{C 1}^{1}(s)= & -\frac{\hbar}{2} \frac{s a^{s-1}}{2 \pi^{2}} \mathrm{~B}\left(\frac{1}{2}, 1-\frac{s}{2}\right) \sin \left(\pi \frac{s}{2}\right) \\
& \times\left[\int_{0}^{\infty} \mathrm{d} v v^{1-s} \sum_{m=-\infty}^{\infty}\left(I_{m}(v) K_{m}(v)\right)^{\prime}+\frac{2}{1-s} \int_{0}^{\infty} \mathrm{d} v v^{2-s} \sum_{m=-\infty}^{\infty} I_{m}(v) K_{m}(v)\right] . \tag{23}
\end{align*}
$$

These integrals cannot be straightforwardly taken at $s=-1$ but, if this is ignored, we may formally put $s=-1$ and get
$\mathcal{E}_{C 1}^{1}(-1) \rightarrow-\frac{\hbar}{8 \pi a^{2}} \int_{0}^{\infty} \mathrm{d} v v^{2} \sum_{m=-\infty}^{\infty}\left(I_{m}(v) K_{m}(v)\right)^{\prime}-\frac{\hbar}{8 \pi a^{2}} \int_{0}^{\infty} \mathrm{d} v v^{3} \sum_{m=-\infty}^{\infty} I_{m}(v) K_{m}(v)$.

The first part could arguably be dismissed as a mere contact term because, from (18), it may be shown that it is local in v. (In fact it is possible to obtain $\lim _{\phi \rightarrow 0} \sum_{m=-\infty}^{\infty}\left(I_{m}(v) K_{m}(v)\right)^{\prime} \mathrm{e}^{\mathrm{i} m \phi}=$ $-\frac{1}{v}$.) The second part of (24) cancels the bulk contribution found in [5]. (See formulae (72), (78) there and recall that the Casimir radial pressure is $P_{C}=\frac{1}{\pi a^{2}} \mathcal{E}_{C}$.)

Viewed in a different way, by the arguments in [13] (and references therein) all linear terms in $\left(\varepsilon_{2}-\varepsilon_{1}\right)$ have to be removed because they are the self-energy of the electromagnetic field due to polarizable particles. By that rule, one simply must take out the linear part, regardless of its particular form. This is actually a re-statement of the physical reason for the removal of the bulk contribution.

When going on to second order in $(\varepsilon-1)$, we take first the piece called $\mathcal{E}_{C 2}^{20 A}(s)$, as its calculation is most similar to that of $\mathcal{E}_{C 1}^{0}(s), \mathcal{E}_{C 1}^{1}(s)$. From the $\mathcal{E}_{C 2}^{20 A}(s)$ given in (15), the $L_{m 2}^{20 A}(y)$ in (9), expressions (10) with $y=\mathrm{i} v$, introducing, once more, $1=-v W\left[I_{m}(v), K_{m}(v)\right]$, and using the same reasoning that led to (22), one finds

$$
\begin{equation*}
\mathcal{E}_{C 2}^{20 A}(s)=0 \tag{25}
\end{equation*}
$$

Now, selecting the lines in (15), which determine $\mathcal{E}_{C 2}^{00}(s), \mathcal{E}_{C 2}^{10}(s), \mathcal{E}_{C 2}^{20 B}(s), \mathcal{E}_{C 2}^{11}(s)$, the parts of (9) which define $L_{m 2}^{00}(y), L_{m 2}^{10}(y), L_{m 2}^{20 B}(y), L_{m 2}^{11}(y)$, the form of $\Delta_{m}^{(1,0)}(y)$ dictated by (10)
(its square for the case of $\left.L_{m 2}^{20 B}(y)\right)$, and setting $y=\mathrm{i} v$, we obtain

$$
\begin{align*}
& \mathcal{E}_{C 2}^{00}(s)= \frac{\hbar}{2} \frac{s a^{s-1}}{4 \pi^{2}} \mathrm{~B}\left(\frac{1}{2},-\frac{s}{2}\right) \sin \left(-\pi \frac{s}{2}\right) \int_{0}^{\infty} \mathrm{d} v v^{2-s} \sum_{m=-\infty}^{\infty} I_{m}^{\prime 2}(v) K_{m}^{2}(v) \\
& \mathcal{E}_{C 2}^{10}(s)= \frac{\hbar}{2} \frac{s a^{s-1}}{4 \pi^{2}} \mathrm{~B}\left(\frac{1}{2}, 1-\frac{s}{2}\right) \sin \left(\pi \frac{s}{2}\right) \int_{0}^{\infty} \mathrm{d} v v^{2-s} \\
& \times \sum_{m=-\infty}^{\infty}\left[2 I_{m}(v) I_{m}^{\prime}(v) K_{m}(v) K_{m}^{\prime}(v)+v I_{m}^{\prime 2}(v) K_{m}(v) K_{m}^{\prime}(v)\right. \\
&\left.\quad-\left(v+\frac{m^{2}}{v}\right) I_{m}^{2}(v) K_{m}(v) K_{m}^{\prime}(v)\right] \\
& \mathcal{E}_{C 2}^{20 B}(s)=\frac{\hbar}{2} \frac{s a^{s-1}}{8 \pi^{2}} \mathrm{~B}\left(\frac{1}{2}, 2-\frac{s}{2}\right) \sin \left(-\pi \frac{s}{2}\right) \int_{0}^{\infty} \mathrm{d} v v^{2-s} \\
& \quad \times \sum_{m=-\infty}^{\infty}\left[I_{m}^{\prime 2}(v) K_{m}^{2}(v)+I_{m}^{2}(v) K_{m}^{\prime 2}(v)\right. \tag{26}\\
&+2\left(1-v^{2}-m^{2}\right) I_{m}(v) I_{m}^{\prime}(v) K_{m}(v) K_{m}^{\prime}(v) \\
&+v^{2} I_{m}^{\prime 2}(v) K_{m}^{\prime 2}(v)+\left(v^{2}+2 m^{2}+\frac{m^{4}}{v^{2}}\right) I_{m}^{2}(v) K_{m}^{2}(v) \\
&+2 v\left(I_{m}^{\prime 2}(v) K_{m}(v) K_{m}^{\prime}(v)+I_{m}(v) I_{m}^{\prime}(v) K_{m}^{\prime 2}(v)\right) \\
&\left.\quad 2\left(v+\frac{m^{2}}{v}\right)\left(I_{m}(v) I_{m}^{\prime}(v) K_{m}^{2}(v)+I_{m}^{2}(v) K_{m}(v) K_{m}^{\prime}(v)\right)\right] \\
& \mathcal{E}_{C 2}^{11}(s)=\frac{1}{2} \frac{s a^{s-1}}{2 \pi^{2}} \mathrm{~B}\left(\frac{3}{2}, 1-\frac{s}{2}\right) \sin \left(\pi \frac{s}{2}\right) \int_{0}^{\infty} \mathrm{d} v v^{-s} \sum_{m=-\infty}^{\infty} m^{2} I_{m}^{2}(v) K_{m}^{2}(v)
\end{align*}
$$

The outcome of replacing the results (19) into (26) and expanding in $(s+1)$ is

$$
\begin{equation*}
\mathcal{E}_{C 2}^{00}(s)+\mathcal{E}_{C 2}^{10}(s)+\mathcal{E}_{C 2}^{20 B}(s)+\mathcal{E}_{C 2}^{11}(s)=\frac{\hbar}{a^{2}} \widehat{\mathcal{E}}(s+1)+\mathcal{O}\left((s+1)^{2}\right) \tag{27}
\end{equation*}
$$

with $\widehat{\mathcal{E}}=\frac{23}{5760 \pi}$. Actually, each term vanishes at $s=-1$. Formulae (25) and (27) make evident that

$$
\begin{equation*}
\lim _{s \rightarrow-1} \mathcal{E}_{C 2}(s)=0 \tag{28}
\end{equation*}
$$

i.e., the $(\varepsilon-1)^{2}$ contribution to the Casimir energy per unit length in the dilute-dielectric approximation is zero, as we wished to prove.

Employing a regularization which analytically continues the vacuum energy as a function of the eigenmode power, we have found a pure Casimir term (in the sense of [2]) that is seen to vanish through the order of $(\varepsilon-1)^{2}$. Remarkably, for the analogous problem with light velocity conservation condition $[1,12]$ the result is null through the order of $\xi^{2} \equiv\left(\frac{\varepsilon_{1}-\varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}}\right)^{2}$. In fact, we have applied a form of zeta function regularization, whose links to other techniques have been studied in e.g. [14]. The sight of (19) makes us evoke the words of [15] and proclaim that a forest of gamma functions has grown out of an analytic continuation.

A divergence at third order in $(\varepsilon-1)$ introduces an unavoidable ambiguity [4] (for further discussions on divergences see [16].) No universal agreement exists on the interpretation of the physical significance of such infinities, as commented in [15]. The nature of a third order divergence, viewed as a weak-coupling limit, has been considered in [17].

Acknowledgments

AR thanks V V Nesterenko, M Bordag and I G Pirozhenko for observations and comments. The authors acknowledge useful conversations with Inés Cavero-Peláez. The work of KAM was supported in part by a grant from the US Department of Energy.

References

[1] Milton K A, Nesterenko A V and Nesterenko V V 1999 Phys. Rev. D 59105009 (Preprint hep-th/9711168 v3) (The v1 version did not include the first author.)
[2] Barton G 2001 J. Phys. A: Math. Gen. 344083
[3] Milton K A and Ng Y J 1997 Phys. Rev. E 554207
Brevik I H, Marachevsky V N and Milton K A 1999 Phys. Rev. Lett. 823948
Barton G 1999 J. Phys. A: Math. Gen. 32525
[4] Bordag M and Pirozhenko I G 2001 Phys. Rev. D 64025019 (Preprint hep-th/0102193)
[5] Cavero-Peláez I and Milton K A 2005 Ann. Phys., NY 320108 (Preprint hep-th/0412135 v2)
[6] Romeo A and Milton K A 2005 Phys. Lett. B 621309 (Preprint hep-th/0504207)
[7] Stratton J A 1941 Electromagnetic Theory (NewYork: McGraw-Hill)
[8] van Kampen N G, Nijboer B R A and Schram K 1968 Phys. Lett. A 26307
[9] Milton K A, DeRaad L L and Schwinger J S 1978 Ann. Phys., NY 115388
[10] Brevik I, Jensen B and Milton K A 2001 Phys. Rev. D 64088701 (Preprint hep-th/0004041)
[11] Gradshteyn I S and Ryzhik I M 1994 Table of Integrals, Series and Products 5th edn (New York: Academic)
[12] Klich I 2000 Phys. Rev. D 61025004 (Preprint hep-th/9908101)
Klich I and Romeo A 2000 Phys. Lett. B 476369 (Preprint hep-th/9912223)
[13] Lambiase G, Scarpetta G and Nesterenko V V 2001 Mod. Phys. Lett. A 161983 (Preprint hep-th/9912176)
[14] Cognola G, Vanzo L and Zerbini S 1992 J. Math. Phys. 33222 Beneventano C G and Santangelo E M 1996 Int. J. Mod. Phys. A 112871 (Preprint hep-th/9501122)
[15] Fulling S A 2003 J. Phys. A: Math. Gen. 366857 (Preprint quant-ph/0302117)
[16] Graham N, Jaffe R L, Khemani V, Quandt M, Schroeder O and Weigel H 2004 Nucl. Phys. B 677379 (Preprint hep-th/0309130) and references therein
[17] Cavero-Peláez I, Milton K A and Wagner J 2005 Preprint hep-th/0508001 v2

