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Abstract
We comment on a recent calculation of the zero-point energy for a dilute
and infinitely long cylinder of purely-dielectric material. The vanishing result
predicted by integration of van der Waals potentials is obtained.

PACS numbers: 42.50.Pq, 42.50.Lc, 11.10.Gh, 03.50.De

The Casimir effect is a change in the electromagnetic vacuum fluctuations brought about by
the presence of boundaries. Particularly, cylindrical surfaces limiting dielectric media were
considered in [1]. One of the first versions of that paper inspired an unpublished calculation,
by Romeo, of the van der Waals energy for a purely dielectric cylinder in the dilute-dielectric
approximation, which yielded a null result. That calculation found a tribune in appendix B
of the final version of [1] and, eventually, unpublished work by Milonni and [2] by Barton
provided independent confirmations.

This finding aroused curiosity about the corresponding Casimir energy, which would
have to show the predicted equality between both quantities [3] and, therefore, was expected
to vanish similarly. The divergences of this problem were studied through its heat kernel
coefficents in [4], and the expected vanishing was first verified in [5], where the Casimir
pressure was obtained from the expectation value of the stress–energy tensor using Green’s
functions. Next, a calculation of the Casimir energy based on the mode summation method
[6] was completed. The present paper offers a comment on that work.

Let Jm,Hm denote the Bessel and Hankel functions (for y > 0,Hm(y) ≡ H(1)
m (y)).

Given an infinitely long cylinder of radius a, oriented along the z-axis, with permittivity and
permeability (ε1, µ1), surrounded by a medium with permittivity and permeability (ε2, µ2),
the eigenfrequencies ω of the Maxwell equations with the adequate boundary conditions are
the solutions of

fm(kz, ω) = 0, m ∈ Z, kz ∈ R,

fm(kz, ω) ≡ 1

�2

[
�TE

m (x, y)�TM
m (x, y) − m2 a4ω2k2

z

x2y2
(ε1µ1 − ε2µ2)

2J 2
m(x)H 2

m(y)

]
(1)
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(see [7, 1]), where

� = −2i

π
,

�TE
m (x, y) = µ1yJ ′

m(x)Hm(y) − µ2xJm(x)H ′
m(y),

�TM
m (x, y) = ε1yJ ′

m(x)Hm(y) − ε2xJm(x)H ′
m(y),

x = λ1a, y = λ2a, λ2
i = εiµiω

2 − kz, i = 1, 2.

(2)

The m index is the azimuthal quantum number, kz is the momentum along the cylinder axis,
and p labels the zeros of fm(kz, ω). In fact fm = −�−2�,� being the same object as in
[5] and �−2 a factor introduced for convenience. The velocities of light in each media are
ci = (εiµi)

−1/2, i = 1, 2.
If medium 1 is purely dielectric and medium 2 is vacuum, ε1 = ε, µ1 = 1, ε2 = µ2 = 1

(obviously, c2 = 1). Further,

ω = a−1(y2 + k̂ 2)1/2, x2 = y2 + (ε − 1)(y2 + k̂ 2), k̂ ≡ kza. (3)

The Casimir energy per unit length stems from the mode sum

EC = 1

2
h̄

∫ ∞

−∞

dkz

2π

∑
m

∑
p

ωm,p,kz
, (4)

which is divergent, and will be regularized appropriately (see below). Reference [4] tells
us that, up through the order of (ε − 1)2, there are no ambiguities, because the heat kernel
coefficient which would multiply them is of O((ε − 1)3). Thus, we may just set

EC(s) = h̄

2

∫ ∞

−∞

dkz

2π

∑
m

∑
p

ω−s
m,p,kz

= h̄

2
as−1

∫ ∞

−∞

d̂k

2π

∑
m

∑
p

(
y2

m,p + k̂ 2
)−s/2

, (5)

without any additional mass scale. EC(s) is a function of the complex variable s, and our idea
is to redefine (4) by analytic continuation of this function to s = −1, i.e.,

EC = lim
s→−1

EC(s). (6)

Once that k̂, m have specific values, the sum over p is expressed as a contour integral in
complex y plane:

EC(s) = h̄

2
as−1

∫ ∞

−∞

d̂k

2π

∞∑
m=−∞

s

2π i

∫
C

dy y(y2 + k̂ 2)−s/2−1 ln fm, (7)

where C is a circuit enclosing all the y values corresponding to the positive zeros of fm (the
argument principle [8] derived from the residue theorem). When applying this method, one
sometimes finds an asymptotic form fm,as of fm and then subtracts ln fm,as from ln fm in the
integrand. In fact, the factors introduced in (1) relative to the original fm of [1] have the same
effect as having divided that function by the leading part of fm,as.

At this point, the logarithm function of (7) is expanded in powers of (ε − 1), taking y as
an independent variable and x as a function of y, k̂, ε (see (3)). Then,

ln fm = [
L0

m1(y) + L1
m1(y)(y2 + k̂ 2)

]
(ε − 1) +

[
L00

m2(y) + L10
m2(y)(y2 + k̂ 2)

+ L20
m2(y)(y2 + k̂ 2)2 + L11

m2(y)(y2 + k̂ 2)̂k 2
]
(ε − 1)2 + O((ε − 1)3), (8)
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where

L0
m1(y) = 1

�
yJ ′

m(y)Hm(y),

L1
m1(y) = 1

�y
�(1,0)

m (y),

L00
m2(y) = − 1

2�2
y2J ′

m

2
(y)H 2

m(y),

L10
m2(y) = − 1

2�2

[
�(1,0)

m (y)J ′
m(y)Hm(y) +

�

y

(
J ′

m(y) + y

(
1 − m2

y2

)
Jm(y)

)
Hm(y)

]
,

L20
m2(y) = L20A

m2 (y) + L20B
m2 (y),


L20A

m2 (y) = 1

4�y2

(
�(2,0)

m (y) − 1

y
�(1,0)

m (y)

)
,

L20B
m2 (y) = − 1

4�2y2

(
�(1,0)

m (y)
)2

,

L11
m2(y) = − m2

�2y4
J 2

m(y)H 2
m(y),

(9)

with

�(1,0)
m (y) = − 1

y
[y2J ′

m(y)H ′
m(y) + (y2 − m2)Jm(y)Hm(y)] − (Jm(y)Hm(y))′,

�(2,0)
m (y) = (

�(1,0)
m (y)

)′ −
(

1 − m2 + 1

y2

)
�,

(
�(1,0)

m (y)
)′ ≡ d

dy
�(1,0)

m (y).

(10)

Now, (8) is inserted into (7). The obtained expression involves integrals of the form

I ≡
∫ ∞

−∞
d̂k

∫
C

dy yF(y)(y2 + k̂ 2)−αk̂2β, (11)

where C is the contour of (7) and F satisfies F(−iv) = F(iv) for v ∈ R, as well as having
good asymptotic properties (the role of F is played by the Lm’s of (9), (10)). Examining the
(y2 + k̂ 2) powers in (7), (8), one sees that, in the required cases, α = s/2 + 1, s/2, s/2 − 1,
and β = 0 except for one integral with β = 1. Analytic continuation in s obviously amounts
to analytic continuation in α. Following [6], the value of I is given by

I = −2iB

(
β +

1

2
, 1 − α

)
sin(πα)

∫ ∞

0
dv v2−2α+2βF (iv), (12)

where B denotes the Euler beta function (about the mathematical basis, see also [9, 10]). Note
that for s = −1, i.e., α = 1/2,−1/2,−3/2, and for β = 0, 1, the beta and sine functions are
finite. Application of formula (12) to equations (7), (8) gives

EC(s) = EC1(s)(ε − 1) + EC2(s)(ε − 1)2 + O((ε − 1)3), (13)

where

EC1(s) = E0
C1(s) + E1

C1(s),
E0

C1(s) = −h̄

2

sas−1

2π2
B

(
1

2
,− s

2

)
sin

(
−π

s

2

) ∞∑
m=−∞

∫ ∞

0
dv v−sL0

m1(iv),

E1
C1(s) = −h̄

2

sas−1

2π2
B

(
1

2
, 1 − s

2

)
sin

(
π

s

2

) ∞∑
m=−∞

∫ ∞

0
dv v2−sL1

m1(iv),

(14)
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and

EC2(s) = E00
C2(s) + E10

C2(s) + E20A
C2 (s) + E20B

C2 (s) + E11
C2(s),

E00
C2(s) = −h̄

2

sas−1

2π2
B

(
1

2
,− s

2

)
sin

(
−π

s

2

) ∞∑
m=−∞

∫ ∞

0
dv v−sL00

m2(iv),

E10
C2(s) = −h̄

2

sas−1

2π2
B

(
1

2
, 1 − s

2

)
sin

(
π

s

2

) ∞∑
m=−∞

∫ ∞

0
dv v2−sL10

m2(iv),

E20A,B
C2 (s) = −h̄

2

sas−1

2π2
B

(
1

2
, 2 − s

2

)
sin

(
−π

s

2

) ∞∑
m=−∞

∫ ∞

0
dv v4−sL

20A,B
m2 (iv),

E11
C2(s) = −h̄

2

sas−1

2π2
B

(
3

2
, 1 − s

2

)
sin

(
π

s

2

) ∞∑
m=−∞

∫ ∞

0
dv v4−sL11

m2(iv).

(15)

With E0
C1(s) taken from (14), and L0

m1(iv) from (9), we arrive at

E0
C1(s) = −h̄

2

sas−1

2π2
B

(
1

2
,− s

2

)
sin

(
−π

s

2

) ∞∑
m=−∞

∫ ∞

0
dv v1−sI ′

m(v)Km(v). (16)

The beta and sine functions are already finite at s = −1, and the integral will be reexpressed
by introducing the factor 1 = −vW [Im(v),Km(v)] = −v[Im(v)K ′

m(v) − I ′
m(v)Km(v)] for

every m:∫ ∞

0
dv v1−s

∞∑
m=−∞

I ′
m(v)Km(v) = −

∫ ∞

0
dv v2−s

∞∑
m=−∞

Im(v)I ′
m(v)Km(v)K ′

m(v)

+
∫ ∞

0
dv v2−s

∞∑
m=−∞

I ′
m

2
(v)K2

m(v). (17)

The summations over m will be performed by taking advantage of the addition theorem for
the modified Bessel functions:

∞∑
m=−∞

Im(kr)Km(kρ) eimφ = K0(kR(r, ρ, φ))

R(r, ρ, φ) =
√

r2 + ρ2 − 2rρ cos φ, ρ > r.

(18)

Suitable manipulations of this identity ([5, 6, 11, 12]) yield∫ ∞

0
dv v2−s

∞∑
m=−∞

I ′
m

2
(v)K2

m(v) =
∫ ∞

0
dv v2−s

∞∑
m=−∞

K ′
m

2
(v)I 2

m(v) =
∫ ∞

0
dv v2−s

∞∑
m=−∞

Im(v)I ′
m(v)Km(v)K ′

m(v) = 1

8π1/2

�
(

5−s
2

)
�2

(
3−s

2

)
�

(
1−s

2

)
�(3 − s)

�
(

s
2

)
�

(
s+1

2

)
∫ ∞

0
dv v2−s

∞∑
m=−∞

m2Im(v)I ′
m(v)Km(v)K ′

m(v) = 1

16π1/2

�4
(

5−s
2

)
�(5 − s)

�
(

s−2
2

)
�

(
s+1

2

)
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0
dv v4−s

∞∑
m=−∞

I ′
m

2
(v)K ′

m

2
(v) = 1

8π1/2

[
�4

(
5−s

2

)
�(5 − s)

�
(

s
2

)
�

(
s+1

2

) +
�2

(
5−s

2

)
�2

(
3−s

2

)
�(4 − s)

�
(

s−2
2

)
�

(
s−1

2

)
+

1

4

�
(

5−s
2

)
�2

(
3−s

2

)
�

(
1−s

2

)
�(3 − s)

�
(

s−4
2

)
�

(
s−3

2

)]
∫ ∞

0
dv v4−s

∞∑
m=−∞

I 2
m(v)K2

m(v) = 1

8π1/2

�4
(

5−s
2

)
�(5 − s)

�
(

s−4
2

)
�

(
s−3

2

)
∫ ∞

0
dv v2−s

∞∑
m=−∞

m2I 2
m(v)K2

m(v) = 1

16π1/2

�
(

7−s
2

)
�2

(
5−s

2

)
�

(
3−s

2

)
�(5 − s)

�
(

s−4
2

)
�

(
s−1

2

)
∫ ∞

0
dv v−s

∞∑
m=−∞

m4I 2
m(v)K2

m(v) = 1

8π1/2

[
3

4

�4
(

5−s
2

)
�(5 − s)

�
(

s−4
2

)
�

(
s+1

2

)
+

1

2

�2
(

5−s
2

)
�2

(
3−s

2

)
�(4 − s)

�
(

s−4
2

)
�

(
s−1

2

) +
1

4

�
(

5−s
2

)
�2

(
3−s

2

)
�

(
1−s

2

)
�(3 − s)

�
(

s−4
2

)
�

(
s−3

2

)]
∫ ∞

0
dv v3−s

∞∑
m=−∞

I ′
m

2
(v)Km(v)K ′

m(v) =
∫ ∞

0
dv v3−s

∞∑
m=−∞

K ′
m

2
(v)Im(v)I ′

m(v) = − 1

8π1/2

[
�2

(
5−s

2

)
�2

(
3−s

2

)
�(4 − s)

�
(

s
2

)
�

(
s+1

2

)
+

1

2

�
(

5−s
2

)
�2

(
3−s

2

)
�

(
1−s

2

)
�(3 − s)

�
(

s−2
2

)
�

(
s−1

2

)]
∫ ∞

0
dv v3−s

∞∑
m=−∞

I 2
m(v)Km(v)K ′

m(v) =
∫ ∞

0
dv v3−s

∞∑
m=−∞

K2
m(v)Im(v)I ′

m(v) = − 1

8π1/2

�2
(

5−s
2

)
�2

(
3−s

2

)
�(4 − s)

�
(

s−2
2

)
�

(
s−1

2

)
∫ ∞

0
dv v1−s

∞∑
m=−∞

m2I 2
m(v)Km(v)K ′

m(v) =
∫ ∞

0
dv v1−s

∞∑
m=−∞

m2K2
m(v)Im(v)I ′

m(v) = − 1

16π1/2

�2
(

5−s
2

)
�2

(
3−s

2

)
�(4 − s)

�
(

s−2
2

)
�

(
s+1

2

) . (19)

Although the left-hand side of each integral is not initially defined for s = −1, the right-hand
side together with the remaining s dependent factors in EC(s) will eventually provide the
desired extension to negative s through the existing analytic continuations of the involved
functions. Then, the poles at s = −1,−3,−5, . . . in the last dividing gamma functions will
give rise to zeros at these points.

Going back to E0
C1(s), since (19) show that the two integrals in the second line of (17)

have the same value,

E0
C1(s) = 0, (20)

even before setting s = −1.
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Formulae (14) tell us that E1
C1(s) involves the integration of the L1

m1(iv) function, defined
by (9), (10). Therefore,

E1
C1(s) = −h̄

2

sas−1

2π2
B

(
1

2
, 1 − s

2

)
sin

(
π

s

2

) ∞∑
m=−∞

∫ ∞

0
dv v2−s

×
[
I ′
m(v)K ′

m(v) −
(

1 +
m2

v2

)
Im(v)Km(v) +

1

v
(Im(v)Km(v))′

]
. (21)

We multiply, again, each term in the m summation of (21) by 1 = −vW [Im(v),Km(v)], and
turn the initial expression into a linear combination of integrals with summations of products
of four Bessel functions. That linear combination yields an identically null result—one that
is zero for any s value—by virtue of the symmetries observed in (19) under interchange of
different Bessel function types (see also comment after equation (80) in [5]). As a result,

E1
C1(s) = 0. (22)

Equation (21) admits the following reinterpretation. Taking into account the fact that Im,Km

satisfy the modified Bessel equation, we apply partial integration to (21) omitting a ‘boundary
term’ which vanishes for a given s range that does not include s = −1 yet. Doing so, we find

E1
C1(s) = −h̄

2

sas−1

2π2
B

(
1

2
, 1 − s

2

)
sin

(
π

s

2

)
×

[∫ ∞

0
dv v1−s

∞∑
m=−∞

(Im(v)Km(v))′ +
2

1 − s

∫ ∞

0
dv v2−s

∞∑
m=−∞

Im(v)Km(v)

]
.

(23)

These integrals cannot be straightforwardly taken at s = −1 but, if this is ignored, we may
formally put s = −1 and get

E1
C1(−1) → − h̄

8πa2

∫ ∞

0
dv v2

∞∑
m=−∞

(Im(v)Km(v))′ − h̄

8πa2

∫ ∞

0
dv v3

∞∑
m=−∞

Im(v)Km(v).

(24)

The first part could arguably be dismissed as a mere contact term because, from (18), it may be
shown that it is local in v. (In fact it is possible to obtain limφ→0

∑∞
m=−∞(Im(v)Km(v))′ eimφ =

− 1
v
.) The second part of (24) cancels the bulk contribution found in [5]. (See formulae (72),

(78) there and recall that the Casimir radial pressure is PC = 1
πa2 EC .)

Viewed in a different way, by the arguments in [13] (and references therein) all linear
terms in (ε2 − ε1) have to be removed because they are the self-energy of the electromagnetic
field due to polarizable particles. By that rule, one simply must take out the linear part,
regardless of its particular form. This is actually a re-statement of the physical reason for the
removal of the bulk contribution.

When going on to second order in (ε − 1), we take first the piece called E20A
C2 (s), as its

calculation is most similar to that of E0
C1(s), E1

C1(s). From the E20A
C2 (s) given in (15), the L20A

m2 (y)

in (9), expressions (10) with y = iv, introducing, once more, 1 = −vW [Im(v),Km(v)], and
using the same reasoning that led to (22), one finds

E20A
C2 (s) = 0. (25)

Now, selecting the lines in (15), which determine E00
C2(s), E10

C2(s), E20B
C2 (s), E11

C2(s), the parts
of (9) which define L00

m2(y), L10
m2(y), L20B

m2 (y), L11
m2(y), the form of �(1,0)

m (y) dictated by (10)
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(its square for the case of L20B
m2 (y)), and setting y = iv, we obtain

E00
C2(s) = h̄

2

sas−1

4π2
B

(
1

2
,− s

2

)
sin

(
−π

s

2

) ∫ ∞

0
dv v2−s

∞∑
m=−∞

I ′
m

2
(v)K2

m(v),

E10
C2(s) = h̄

2

sas−1

4π2
B

(
1

2
, 1 − s

2

)
sin

(
π

s

2

) ∫ ∞

0
dv v2−s

×
∞∑

m=−∞

[
2Im(v)I ′

m(v)Km(v)K ′
m(v) + vI ′

m

2
(v)Km(v)K ′

m(v)

−
(

v +
m2

v

)
I 2
m(v)Km(v)K ′

m(v)

]
,

E20B
C2 (s) = h̄

2

sas−1

8π2
B

(
1

2
, 2 − s

2

)
sin

(
−π

s

2

) ∫ ∞

0
dv v2−s

×
∞∑

m=−∞

[
I ′
m

2
(v)K2

m(v) + I 2
m(v)K ′

m

2
(v)

+ 2(1 − v2 − m2)Im(v)I ′
m(v)Km(v)K ′

m(v)

+ v2I ′
m

2
(v)K ′

m

2
(v) +

(
v2 + 2m2 +

m4

v2

)
I 2
m(v)K2

m(v)

+ 2v
(
I ′
m

2
(v)Km(v)K ′

m(v) + Im(v)I ′
m(v)K ′

m

2
(v)

)
− 2

(
v +

m2

v

) (
Im(v)I ′

m(v)K2
m(v) + I 2

m(v)Km(v)K ′
m(v)

)]
,

E11
C2(s) = h̄

2

sas−1

2π2
B

(
3

2
, 1 − s

2

)
sin

(
π

s

2

) ∫ ∞

0
dv v−s

∞∑
m=−∞

m2I 2
m(v)K2

m(v).

(26)

The outcome of replacing the results (19) into (26) and expanding in (s + 1) is

E00
C2(s) + E10

C2(s) + E20B
C2 (s) + E11

C2(s) = h̄

a2
Ê(s + 1) + O((s + 1)2), (27)

with Ê = 23
5760π

. Actually, each term vanishes at s = −1. Formulae (25) and (27) make
evident that

lim
s→−1

EC2(s) = 0, (28)

i.e., the (ε − 1)2 contribution to the Casimir energy per unit length in the dilute-dielectric
approximation is zero, as we wished to prove.

Employing a regularization which analytically continues the vacuum energy as a function
of the eigenmode power, we have found a pure Casimir term (in the sense of [2]) that is seen
to vanish through the order of (ε − 1)2. Remarkably, for the analogous problem with light
velocity conservation condition [1, 12] the result is null through the order of ξ 2 ≡ (

ε1−ε2
ε1+ε2

)2
. In

fact, we have applied a form of zeta function regularization, whose links to other techniques
have been studied in e.g. [14]. The sight of (19) makes us evoke the words of [15] and proclaim
that a forest of gamma functions has grown out of an analytic continuation.

A divergence at third order in (ε−1) introduces an unavoidable ambiguity [4] (for further
discussions on divergences see [16].) No universal agreement exists on the interpretation of
the physical significance of such infinities, as commented in [15]. The nature of a third order
divergence, viewed as a weak-coupling limit, has been considered in [17].
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